参考文献 References
[1] Boccaletto, P., et al., MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res, 2018. 46(D1): p. D303-D307.
[2] Breiling, A. and F. Lyko, Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin, 2015. 8: p. 24.
[3] Reid, R., P.J. Greene, and D.V. Santi, Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res, 1999. 27(15): p. 3138-45.
[4] Liu, Y. and D.V. Santi, m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc Natl Acad Sci U S A, 2000. 97(15): p. 8263-5.
[5] King, M.Y. and K.L. Redman, RNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry, 2002. 41(37): p. 11218-25.
[6] King, M., D. Ton, and K.L. Redman, A conserved motif in the yeast nucleolar protein Nop2p contains an essential cysteine residue. Biochem J, 1999. 337 ( Pt 1): p. 29-35.
[7] Blanco, S., et al., Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J, 2014. 33(18): p. 2020-39.
[8] Xing, J., et al., NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol Cell Biol, 2015. 35(23): p. 4043-52.
[9] Redman, K.L., Assembly of protein-RNA complexes using natural RNA and mutant forms of an RNA cytosine methyltransferase. Biomacromolecules, 2006. 7(12): p. 3321-6.
[10] Jeltsch, A., Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem, 2002. 3(4): p. 274-93.
[11] Cheng, X., Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct, 1995. 24: p. 293-318.
[12] Watkins, N.J. and M.T. Bohnsack, The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA, 2012. 3(3): p. 397-414.
[13] Sloan, K.E., et al., Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol, 2017. 14(9): p. 1138-1152.
[14] Schosserer, M., et al., Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun, 2015. 6: p. 6158.
[15] Gigova, A., et al., A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA, 2014. 20(10): p. 1632-44.
[16] Hayrapetyan, A., H. Grosjean, and M. Helm, Effect of a quaternary pentamine on RNA stabilization and enzymatic methylation. Biol Chem, 2009. 390(9): p. 851-61.
[17] Motorin, Y. and M. Helm, tRNA stabilization by modified nucleotides. Biochemistry, 2010. 49(24): p. 4934-44.
[18] Sharma, S. and D.L.J. Lafontaine, 'View From A Bridge': A New Perspective on Eukaryotic rRNA Base Modification. Trends Biochem Sci, 2015. 40(10): p. 560-575.
[19] Sloan, K.E., M.T. Bohnsack, and N.J. Watkins, The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep, 2013. 5(1): p. 237-47.
[20] Haag, S., J. Kretschmer, and M.T. Bohnsack, WBSCR22/Merm1 is required for late nuclear pre-ribosomal RNA processing and mediates N7-methylation of G1639 in human 18S rRNA. RNA, 2015. 21(2): p. 180-7.
[21] Brzezicha, B., et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res, 2006. 34(20): p. 6034-43.
[22] Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8.
[23] Haag, S., et al., NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA, 2015. 21(9): p. 1532-43.
[24] Chan, C.T., et al., Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun, 2012. 3: p. 937.
[25] Shanmugam, R., et al., Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov, 2015. 1: p. 15010.
[26] Tuorto, F., et al., The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J, 2015. 34(18): p. 2350-62.
[27] Dudek, J., P. Rehling, and M. van der Laan, Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta, 2013. 1833(2): p. 274-85.
[28] Haag, S., et al., NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J, 2016. 35(19): p. 2104-2119.
[29] Metodiev, M.D., et al., NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet, 2014. 10(2): p. e1004110.
[30] Camara, Y., et al., MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab, 2011. 13(5): p. 527-39.
[31] Sloan, K.E., C. Hobartner, and M.T. Bohnsack, How RNA modification allows non-conventional decoding in mitochondria. Cell Cycle, 2017. 16(2): p. 145-146.
[32] Squires, J.E., et al., Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res, 2012. 40(11): p. 5023-33.
[33] Amort, T., et al., Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol, 2017. 18(1): p. 1.
[34] Edelheit, S., et al., Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet, 2013. 9(6): p. e1003602.
[35] Yang, X., et al., 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res, 2017. 27(5): p. 606-625.
[36] Li, Q., et al., NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. J Cell Biochem, 2017. 118(9): p. 2587-2598.
[37] Blanco, S. and M. Frye, Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol, 2014. 31: p. 1-7.
[38] Khan, M.A., et al., Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet, 2012. 90(5): p. 856-63.
[39] Martinez, F.J., et al., Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet, 2012. 49(6): p. 380-5.
[40] Flores, J.V., et al., Cytosine-5 RNA Methylation Regulates Neural Stem Cell Differentiation and Motility. Stem Cell Reports, 2017. 8(1): p. 112-124.
[41] Trixl, L., et al., RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell Mol Life Sci, 2018. 75(8): p. 1483-1497.
[42] Chi, L. and P. Delgado-Olguin, Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expr Patterns, 2013. 13(8): p. 319-27.
[43] Khosronezhad, N., A.H. Colagar, and S.G. Jorsarayi, T26248G-transversion mutation in exon7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men. Reprod Fertil Dev, 2015. 27(3): p. 471-80.
[44] Doll, A. and K.H. Grzeschik, Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet Cell Genet, 2001. 95(1-2): p. 20-7.