CSCIED

期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Clinical Research. 2025; 9: (5) ; 108-110 ; DOI: 10.12208/j.ijcr.20250247.

The application status of deep learning in the field of traditional Chinese medicine
深度学习在中医领域的应用现状

作者: 曹圣晗 *

天津中医药大学 天津

*通讯作者: 曹圣晗,单位:天津中医药大学 天津;

发布时间: 2025-05-29 总浏览量: 61

摘要

近年来,深度学习助力中医现代化与智能化发展。其在中医诊断中,处理四诊信息提升诊断客观性与准确性;中药研究里,结合光谱等技术实现药材识别、成分分析及相互作用预测;针灸领域通过穴位定位算法等优化治疗精准度与疗效评估。不过,中医数据标准化、模型可解释性和跨学科融合存在挑战。未来要结合中医理论优化算法,推动中医与现代技术深度融合。

关键词: 深度学习;中医;人工智能;诊断;中药;针灸

Abstract

In recent years, deep learning has helped the modernization and intelligent development of traditional Chinese medicine. In the diagnosis of traditional Chinese medicine, the information of the four diagnosis is processed to improve the objectivity and accuracy of diagnosis. In the research of traditional Chinese medicine, the identification, component analysis, and interaction prediction of medicinal materials are realized by combining spectroscopy and other technologies. In the field of acupuncture and moxibustion, acupoint positioning are used to optimize treatment accuracy and efficacy evaluation. However, there are still challenges remain in data standardization, model interpretability, and interdisciplinary integration. In the future, it is necessary to combine optimization algorithm of traditional Chinese medicine theory and to promote the deep integration of traditional Chinese medicine and modern technology.

Key words: Deep learning; Traditional Chinese Medicine; Artificial intelligence; Diagnosis; Traditional Chinese medicine; Acupuncture and moxibustion

参考文献 References

[1] 关菀, 马志龙, 徐春, 李建强, 杨吉江. 深度学习技术在中医领域中的应用 %J 中国卫生信息管理杂志. 2022; 19(02): 281-285+292.

[2] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Paper presented at: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 182015.

[3] Deng L, Yu DJF, processing tis. Deep learning: methods and applications. 2014;7(3–4):197-387.

[4] 周志远, 万隆, 马利亚. 深度学习技术在医疗领域中的应用探讨 %J 互联网周刊. 2024(07):24-26.

[5] Zhong L, Xin G, Peng Q, Cui J, Zhu L, Liang HJDCM. Deep learning-based recognition of stained tongue coating images. 2024;7(2):129-136.

[6] 李家炜. 基于深度学习的中医舌象特征分类方法研究 [硕士]2022.

[7] 林怡. 基于计算机视觉的中医望诊面色分类研究, 南京财经大学; 2020.

[8] 崔涛, 何佳俊, 何华, 李睿, 赵亮, 医学信息学杂志 垢J. 基于深度学习的舌象特征研究'. 2024;45(7):81-87.

[9] Yu X, Ni H, Yan Z, Wang Z, Wang NJBSP, Control. Interpretable Coronary Heart Disease Syndrome Differentia-tion and Identification Based on Pulse Signal. 2025; 104:107461.

[10] Xu A, Wang T, Yang T, et al. Constitution identification model in traditional Chinese medicine based on multiple features. 2024;7(2):108-119.

[11] Shang H, Feng T, Han D, et al. Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers. 2025;151(2):1-12.

[12] 蓝勇. 中医辨证辅助决策及其可解释性研究 [硕士]2023.

[13] Duan P, Yang K, Su X, et al. HTINet2: herb–target prediction via knowledge graph embedding and residual-like graph neural network. 2024;25(5):bbae414.

[14] Gao Z, Jia S, Li Q, Lu D, Zhang S, Xiao WJSwyxGCxzzJoBESYGZ. Deep learning approach for automatic segmentation of auricular acupoint divisions. 2024;41(1):114-120.

[15] Liu YB, Qin JH, Zeng GFJIJfNMiBE. Back acupoint location method based on prior information and deep learning. 2023;39(12):e3776.

[16] Feng Z, Hu M, Yuan W, et al. Classification Algorithm‐Based fMRI Images for Evaluating the Effect of Yishen Tiaodu Acupuncture on the Recovery Period of Cerebral Infarction. 2022;2022(1):3592145.

引用本文

曹圣晗, 深度学习在中医领域的应用现状[J]. 国际临床研究杂志, 2025; 9: (5) : 108-110.