摘要
背景 正念干预(MBIs)是改善情绪调节的重要身心疗法,但其与音乐疗法结合的神经机制仍缺乏实证支持。现有研究多依赖主观量表,而功能近红外光谱技术(fNIRS)作为一种便携式神经成像工具,可实时监测前额叶皮层活动,为探索正念音乐疗法(MBMT)的脑机制提供了新视角。方法 本研究采用方便取样招募9名健康年轻成年人受试者内实验设计,研究纳入9名健康年轻人(年龄21.78±3.74岁;教育年限16.56±2.40年),在单次45分正念音乐疗法(MBMT)干预中分为静息、启发、增强和正念四个阶段。使用15通道fNIRS设备(NIRSIT LITE)记录前额叶氧合血红蛋白(HbO)浓度,并通过皮尔逊相关系数(r)和线性回归模型(p<0.05)分析信道间功能连接。实验阶段包括正念呼吸、音乐引导反思及动作练习,全程同步标记神经活动数据。数据分析本研究使用针对韩国OBELAB Inc. NIRSIT LITE专题设计的软件作数据收集。及后使用适用于Windows的SPSS ver. 25.0 软件(SPSS Inc.,美国伊利诺伊州芝加哥)对数据进行统计分析,从中得出平均值、标准偏差和相关性。结果显示这项研究的结果表明,正念音乐疗法能够在大脑神经活动中引起特定的变化。在“正念”阶段展示出一组选择性的神经相关性,特别是在背外侧前额叶皮层和前额叶皮层之间,以及左侧背外侧前额叶皮层和左侧腹外侧前额叶皮层之间。在比较前额叶功能连接、各干预阶段差异及前额叶氧合血红蛋白(HbO)浓度等等参数。正念音乐疗法(MBMT)显着调节1.)前额叶功能连接:正念阶段:背外侧前额叶皮层(DLPFC)与前额叶皮层(PFC)间(r=0.884)、左侧DLPFC与腹外侧前额叶皮层(VLPFC)间(r=0.809)呈现强相关(r>0.8),表明选择性神经回路激活。2)干预阶段差异:神经同步性从静息阶段(平均r=0.507)逐步升高至增强阶段峰值(r=0.702,77.14%通道对显着相关),正念阶段略降(r=0.576,56.19%显着相关)。零交叉率进一步支持动态变化:静息阶段信号最不稳定(0.0061Hz),启发阶段最稳定(0.0024Hz)。3)前额叶氧合血红蛋白HbO水平:正念阶段前额叶氧合血红蛋白HbO浓度(0.000228)低于启发阶段(0.000240),但功能连接模式提示认知资源的高效整合。结论 本研究通过fNIRS揭示了正念音乐疗法(MBMT)各阶段对前额叶功能连接的差异化调控,为理解正念干预的神经机制提供了直接证据。正念阶段的选择性连接增强可能反映注意力优化与情绪加工效率提升。未来需结合多模态成像技术(如fMRI)并扩大样本量,以验证长期干预效果及个体化应用潜力,推动基于神经机制及脑接机口的个性化心理健康干预策略。这为正念干预在情绪调节中的作用提供了神经生理学上的证据。未来的研究可以进一步探讨正念音乐疗法对其他认知和情绪功能的影响,以及其在心理健康干预中的潜在应用。
关键词: 功能性近红外光谱技术;正念干预;正念音乐疗法;前额叶皮质;大脑连接
Abstract
Background Mindfulness-based interventions (MBIs) are well-established mind-body therapies for improving emotional regulation; however, the neurobiological mechanisms underlying their integration with music therapy remain underexplored. Existing studies predominantly rely on subjective scales, whereas functional near-infrared spectroscopy (fNIRS), a portable neuroimaging tool, enables real-time monitoring of prefrontal cortical activity, offering novel insights into the neural substrates of mindfulness-based music therapy (MBMT).
Methods Nine healthy young adults (age: 21.78 ± 3.74 years; education: 16.56 ± 2.40 years) underwent a single-session 45-minute MBMT protocol divided into four phases: resting, inspiration, enhancement, and mindfulness. A 15-channel fNIRS system (NIRSIT LITE) was employed to record prefrontal oxygenated hemoglobin (HbO) concentrations. Functional connectivity between channels was analyzed using Pearson correlation coefficients (r) and linear regression models (p < 0.05). The experimental protocol included mindful breathing, music-guided reflection, and movement exercises, with synchronized neural activity markers throughout the session. Data Analysis
Results demonstrated that MBMT significantly modulated prefrontal functional connectivity: 1) Mindfulness Phase: Strong correlations (r > 0.8) were observed between the dorsolateral prefrontal cortex (DLPFC) and prefrontal cortex (PFC) (r = 0.884) and between the left DLPFC and ventrolateral prefrontal cortex (VLPFC) (r = 0.809), indicative of selective neural circuit activation. 2)Phase-Dependent Dynamics: Neural synchrony progressively increased from resting (mean r = 0.507) to peak in the enhancement phase (r = 0.702; 77.14% of channel pairs significant), followed by a slight decline in mindfulness (r = 0.576; 56.19% significant). Zero-crossing rates further validated dynamic fluctuations, with resting phase signals showing the highest instability (0.0061 Hz) and inspiration phase the lowest (0.0024 Hz). 3) HbO Profiles: HbO concentrations during mindfulness (0.000228) were lower than in the inspiration phase (0.000240), yet enhanced functional connectivity patterns suggested efficient cognitive resource integration.
Conclusion This study provides direct neurophysiological evidence that MBMT differentially regulates prefrontal functional connectivity across intervention phases. Selective connectivity strengthening during mindfulness may reflect optimized attentional control and enhanced emotional processing efficiency. Future research should integrate multimodal neuroimaging (e.g., fMRI) and expand sample sizes to validate long-term intervention efficacy and individual-specific applications, advancing personalized mental health strategies grounded in neural mechanisms.
Key words: Functional near-infrared spectroscopy; Mindfulness intervention; Mindfulness-based music therapy; Prefrontal cortex; Brain connectivity
参考文献 References
[1] KabatZinn J. Mindfulness-based interventions in context: Past, present, and future[J]. Clinical Psychology Science and Practice, 2003, 10(2):144–156.
[2] Zhang D, Lee EKP, Mak ECW, et al. Mindfulness-based interventions: an overall review[J]. British Medical Bulletin, 2021, 138(1):41-57.
[3] Liu H, Gao X, Hou Y. Effects of mindfulness-based stress reduction combined with music therapy on pain, anxiety, and sleep quality in patients with osteosarcoma[J]. Brazilian Journal of Psychiatry, 2019, 41(6):540–545.
[4] Lesiuk T. The Development of a Mindfulness-Based Music Therapy (MBMT) Program for Women Receiving Adjuvant Chemotherapy for Breast Cancer[J]. Healthcare, 2016, 4(3):53.
[5] Hwang M H. Health Practitioners’ Understanding and Use of Relaxation Techniques (RTs), Mindfulness Meditation (MM) and Relaxation Music (RM) in the UK and South Korea: a Qualitative Case Study Approach[D]. Faculty of Health and Social Sciences University of the West of England, Bristol, 2017.
[6] 崔旸. 功能性近红外光谱技术研究综述[J]. 中国心理学前沿, 2021, 3(11):1300–1306.
[7] Jöbsis F F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters [J]. Science, 1977, 198(4323):1264-1267.
[8] Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging[J]. PubMed, 1995, 7(3):240–276.
[9] Irani F, Platek S M, Bunce S, et. al. Functional Near Infrared Spectroscopy (fNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders[J]. The Clinical Neuropsychologist, 2007, 21(1):9-37.
[10] Hunt M A, Legge. Neurological Research on Music Therapy for Mental Health: A Summary of Imaging and Research Methods[J]. Music Therapy Perspectives, 2015, 33(2): 142-161.
[11] Kim H J, Jung J H, Lee S W. Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report[J]. Physical Therapy Rehabilitation Science, 2023, 12(3):334-339.
[12] Temizel A, Halici T, Logoglu B, et. al. Chapter 34 - Experiences on Image and Video Processing with CUDA and OpenCL[M]. Elsevier Inc, 2011 :547–567.
[13] CHAN Y H. Biostatistics 104: Correlational analysis[J]. Singapore Medical Journal, 2003, 44(12):614–619.
[14] Do H, Hoang H, Nguyen N, et. al. Intermediate effects of mindfulness practice on the brain activity of college students: An EEG study[J]. BRO Neuroscience Reports, 2023(14): 308–319.
[15] 崔旸. 功能性近红外光谱技术研究综述[J]. 中国心理学前沿, 2021, 3(11):1300–1306.
[16] Siew S, Yu J. Mindfulness-based randomized controlled trials led to brain structural changes: an anatomical likelihood meta-analysis[J]. Scientific Reports, 2023, 13(1):1-10.