CSCIED

期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Clinical Research. 2025; 9: (1) ; 27-29 ; DOI: 10.12208/j.ijcr.20250008.

Characteristics of intestinal flora in patients with liver cirrhosis
肝硬化患者的肠道菌群特征研究

作者: 马驰1, 杨涓2, 郑盛2 *, 付新年1, 李心怡1, 曾雪丽1, 刘佩1, 张顺玲1, 刘涛3

1大理大学临床医学院 云南大理白族自治州

2大理大学第二附属医院 云南昆明

3腾冲市人民医院 云南保山

*通讯作者: 郑盛,单位:大理大学第二附属医院 云南昆明;

发布时间: 2025-01-14 总浏览量: 152

摘要

目的 肠道菌群的动态平衡对维系机体健康发挥着重要作用。本研究旨在探讨肝硬化患者的肠道菌群特征,以及肝硬化进展过程中,不同child-pugh分级下的肠道菌群变化特征。方法 选择2023年2月至2023年8月就诊于云南省第三人民医院的37例肝硬化患者(child A 22例,child B 9例,child C 6例),以及同期36例健康志愿者。收集其新鲜的粪便样本,采用16SrDNA高通量测序技术检测肠道菌群,进行菌群多样性及组成分析。结果 肝硬化患者的三个child-pugh分组与健康对照组(ZC组)的群落丰富度、物种多样性均存在显著差异,且均低于健康对照组。根据各child-pugh分组对比结果显示,随着肝脏储备功能的下降,粪杆菌属(Faecalibacterium)、罗氏菌属(Roseburia)和瘤胃球菌属(Ruminococcus)等肠道内重要的丁酸盐产生菌丰度逐渐下降;属水平上的差异菌群(P<0.05)中,柯林斯氏菌属(Collinsella)、Fusicatenibacter丰度逐渐下降。此外,大肠杆菌-志贺菌属(Escherlchia Shigella)、链球菌属(Streptococcus)、粪杆菌属(Faecalibacterium)、双歧杆菌属(Bifidobacterium)和拟杆菌属(Bacteroides)作为属水平丰度最高的5个菌属,各肝硬化组中Escherichia−Shigella和Streptococcus丰度均高于健康对照组,而Bacteroides丰度均低于健康对照组。LEfSe分析显示,不同child-pugh分级的优势菌属各有不同。结论 Escherichia−Shigella和Streptococcus是肝硬化患者属水平上丰度最高的菌属;并且随着肝脏储备功能的下降,毛螺菌科(Lachnospiraceae)、丹毒杆菌科(Erysipelatoclostridiaceae)、红蝽菌科(Coriobacteriaceae)、Collinsella和Fusicatenibacter丰度逐渐下降,差异均具有统计学意义。

关键词: 肠道菌群;肝硬化;child-pugh分级;肠道菌群多样性;差异菌群

Abstract

Objective The dynamic balance of intestinal flora plays an important role in maintaining body health. The purpose of this study was to investigate the characteristics of intestinal flora in patients with cirrhosis and the changes of intestinal flora under different child-pugh grades during the progression of cirrhosis.
Methods A total of 37 patients with cirrhosis (22 child A, 9 child B, 6 child C) and 36 healthy volunteers were selected from the Third People's Hospital of Yunnan Province from February 2023 to August 2023. Fresh fecal samples were collected, 16SrDNA high-throughput sequencing technology was used to detect intestinal flora, and microbial diversity and composition were analyzed.
Results There were significant differences in community richness and species diversity between the three child-pugh groups of cirrhosis patients and the healthy control group, and they were all lower than the healthy control group. The comparison results of child-pugh groups showed that with the decrease of liver reserve function, the abundance of important butyrate bacterium such as Faecalibacterium, Roseburia and Ruminococcus in the gut has gradually decreased. The abundance of Collinsella and Fusicatenibacter decreased gradually among the different flora at genus level (P<0.05). In addition, Escherlchia Shigella, Streptococcus, Faecalibacterium, Bifidobacterium and Bacteroides are the five genera with the highest level abundance. The abundances of Escherichia−Shigella and Streptococcus in all cirrhosis groups were higher than those in healthy control group, while the abundances of Bacteroides were lower than those in healthy control group. LEfSe analysis showed that the dominant strains of different child-pugh grades were different.
Conclusion   Escherichia−Shigella and Streptococcus were the most abundant genera in patients with cirrhosis. And with the liver reserve function decline, Lachnospiraceae, Erysipelatoclostridiaceae, Coriobacteriaceae, Collinsella and Fusicatenibacter abundance gradually decline, differences were statistically significant.

Key words: Intestinal flora; Liver cirrhosis; Child-pugh classification; Intestinal flora diversity; Differential flora

参考文献 References

[1] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature 2012;486:207–14.

[2] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature. 2010;464(7285):59-65.

[3] Bäckhed F, Roswall J, Peng Y, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life[J]. Cell Host Microbe. 2015;17(6):852.

[4] Chen Y, Zhou J, Wang L. Role and Mechanism of Gut Microbiota in Human Disease[J]. Front Cell Infect Microbiol. 2021;11:625913.

[5] Trebicka J, Macnaughtan J, Schnabl B,et al. The microbiota in cirrhosis and its role in hepatic decompensation[J]. J Hepatol. 2021;75 Suppl 1(Suppl 1):S67-S81.

[6] Kassa Y, Million Y, Gedefie A, et al. Alteration of Gut Microbiota and Its Impact on Immune Response in Patients with Chronic HBV Infection: A Review[J]. Infect Drug Resist,2021,14:2571-2578.

[7] Trebicka J, Hernaez R, Shawcross DL, et al. Recent advances in the prevention and treatment of decompensated cirrhosis and acute-on-chronic liver failure (ACLF) and the role of biomarkers[J]. Gut. 2024;73(6):1015-1024.

[8] Ma J, Li J, Jin C, et al. Association of gut microbiome and primary liver cancer: A two-sample Mendelian randomization and case-control study[J]. Liver Int. 2023;43(1):221-233.

[9] 中华医学会肝病学分会.肝硬化诊治指南(2019年版)[J].中华肝脏病杂志,2019,11:846-865.

[10] Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease[J]. Am J Physiol Gastrointest Liver Physiol. 2020;318(1):G84-G98.

[11] Heidrich B, Vital M, Plumeier I, et al. Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls[J]. Liver Int. 2018;38(1):50-58. 

[12] Ponziani FR, Bhoori S, Castelli C, et al. Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease[J]. Hepatology. 2019;69(1):107-120.

[13] Tian X, Zeng Y, Tu Q, et al. Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway[J]. Int Immunopharmacol. 2023; 124(Pt B):111010.

[14] Juanola O, Ferrusquía-Acosta J, García-Villalba R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis[J]. FASEB J. 2019;33(10):11595-11605.

[15] Sharma SP, Gupta H, Kwon GH, et al. Gut microbiome and metabolome signatures in liver cirrhosis-related complications[J]. Clin Mol Hepatol. Published online July 25, 2024.

[16] Gedgaudas R, Bajaj JS, Skieceviciene J, et al. Circulating microbiome in patients with portal hypertension[J]. Gut Microbes. 2022;14(1):2029674.

[17] Hu J, Cheng S, Yao J, et al. Correlation between altered gut microbiota and elevated inflammation markers in patients with Crohn's disease[J]. Front Immunol. 2022;13:947313.

[18] Zhong X, Cui P, Jiang J, et al. Streptococcus, the Predominant Bacterium to Predict the Severity of Liver Injury in Alcoholic Liver Disease[J]. Front Cell Infect Microbiol,2021,11:649060.

[19] Zhang W, Xu X, Cai L, et al. Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma[J]. Sci Rep. 2023;13(1):7797.

[20] Hirayama M, Nishiwaki H, Hamaguchi T, et al. Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate[J]. PLoS One. 2021;16(11):e0260451.

[21] Li H, Wang M, Chen P, et al. A high-dose of ursodeoxycholic acid treatment alleviates liver inflammation by remodeling gut microbiota and bile acid profile in a mouse model of non-alcoholic steatohepatitis[J]. Biomed Pharmacother. 2024;174: 116617.

引用本文

马驰, 杨涓, 郑盛, 付新年, 李心怡, 曾雪丽, 刘佩, 张顺玲, 刘涛, 肝硬化患者的肠道菌群特征研究[J]. 国际临床研究杂志, 2025; 9: (1) : 27-29.