参考文献 References
[1] Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet,2018,390 (10114) :2769-2778.
[2] GBD 2017 Inflammatory Bowel Disease Collaborators. The global regional, and national burden of inflammatory bowel disease in 195 countries and territories,1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet Gastroenterol Hepatol,2020,5(1):17-30.
[3] King D,Reulen RC, Thomas T,et al. Changing patterns in the epidemiology and outcomes of inflammatory bowel disease in the United Kingdom:2000-2018 [J]. Aliment Pharmacol Ther,2020 ,51 (10) :922-934.
[4] Kotze PG, Underwood FE,Damião AOMC, et al. Progression of Inflammatory Bowel Diseases Throughout Latin America and the Caribbean: A Systematic Review[J]. Clin Gastroenterol Hepatol,2020,18 (2) :304-312.
[5] Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol,2021,18(1):56-66.
[6] Vallim TQDA, Tarling EJ, Edwards PA. Pleiotropic Roles of Bile Acids in Metabolism[J]. Cell Metab, 2013, 17(5) : 657 - 669.
[7] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis [J]. Nat Rev Gastroenterol Hepatol,2017. 15(2): 111 – 128.
[8] Bogatxtev SR,Rolando JC, Ismagilox RF, et al. Self reinoculatiog with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine [J]. Microbiome, 2020, 8 ( 19) : 1-22 .
[9] 王会敏,王正平,董旻岳. 胆汁酸代谢与调控研究进展[J].国际消化病杂志,2010,30( 2) : 79-82.
[10] 雷凯,张程亮,刘雅楠等. 胆汁酸代谢轮廓的研究进展及其应用[J].中国药学杂志,2018,53( 2) : 92-97.
[11] Lavelle A, Sokol H, et al. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.
[12] Chiang JYL. Bile Acid Metabolism and Signaling [ J]. Comprehensive Physiology, 2013, 3(3): 1191 – 1212
[13] Hofmann AF. The enterohepatic circulation of bile acids in mammals:form and functions[J]. Frontiers In Bioscience-Landmark, 2009, 14:2584 - 2598.
[14] Roberts MS, Magnusson BM, Burezynski FJ, et al. Enterohepatic cir-culation-Physiological, pharmacokinetic and clinical implications[ J].Clinical Pharmacokinetics, 2002, 41 (10) : 751 - 790.
[15] Gonzalez FJ . Nuclear receptor control of enterohepatic circulation [ J]. Compr Physiol, 2012,2, 2811– 2828.
[16] Jie Cai, Lulu Sun, Frank J. Gonzalez, et al. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis [ J]. Cell Host Microbe. 2022 March 09; 30(3): 289–300.
[17] Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, Mciver LJ, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease [ J]. Nat Microbiol.2019,4, 293–305.
[18] Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases [ J]. Nature, 2019,569, 655–662.
[19] Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation [ J]. Cell Host Microbe, 2020,27, 659–670 e655.
[20] Lavelle A, Sokol H, et al. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237.
[21] Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3): 956-968.
[22] Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al. Bile acids control Inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity, 2016,45, 802–816.
[23] Campbell C, Mckenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020,581, 475–479.
[24] Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature, 2019,576, 143–148.
[25] Li W, Hang S, Fang Y, Bae S, Zhang Y, Zhang M, Wang G, Mccurry MD, Bae M, Paik D, et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe, 2021,29, 1366–1377 e1369.