参考文献 References
[1] 徐灿丽, 何文星, 郑洋, 等. 铁死亡调控慢性肝病的研究进展[J]. 生理科学进展, 2022, 53(6): 440-446.
[2] Zhang J, Wu C, Gao L, et al. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects[J]. Advances in Pharmacology (San Diego, Calif.), 2020, 87: 89-112.
[3] Zhang C-H, Yang X, Wei J-R, et al. Ethnopharmacology, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Radix Astragali[J]. Chinese Journal of Integrative Medicine, 2021, 27(3): 229-240.
[4] Hernandez-Gea V, Friedman S L. Pathogenesis of liver fibrosis[J]. Annual Review of Pathology, 2011, 6: 425-456.
[5] Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues[J]. Molecular Aspects of Medicine, 2019, 65: 37-55.
[6] Tsuchida T, Friedman S L. Mechanisms of hepatic stellate cell activation[J]. Nature Reviews. Gastroenterology & Hepatology, 2017, 14(7): 397-411.
[7] Trivedi P, Wang S, Friedman S L. The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells[J]. Cell Metabolism, 2021, 33(2): 242-257.
[8] Liu H, Wei W, Sun W, et al. Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells[J]. Journal of Ethnopharmacology, 2009, 122(3): 502-508.
[9] 白雪, 陆璐, 刘振权, 等. 黄芪甲苷抗二甲基亚硝胺诱导肝纤维化大鼠效应研究[J]. 湖南中医药大学学报, 2020, 40(01): 22-27.
[10] Abhilash P A, Harikrishnan R, Indira M. Ascorbic acid supplementation down-regulates the alcohol induced oxidative stress, hepatic stellate cell activation, cytotoxicity and mRNA levels of selected fibrotic genes in guinea pigs[J]. Free Radical Research, 2012, 46(2): 204-213.
[11] Ghatak S, Biswas A, Dhali G K, et al. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice[J]. Toxicology and Applied Pharmacology, 2011, 251(1): 59-69.
[12] 王键, 宋瑞鹏, 孙丹. 黄芪甲苷对大鼠肝星状细胞氧化损伤的作用研究[J]. 解放军医药杂志, 2018, 30(09): 1-4.
[13] Li X, Wang X, Han C, et al. Astragaloside IV suppresses collagen production of activated hepatic stellate cells via oxidative stress-mediated p38 MAPK pathway[J]. Free Radical Biology, 2013, 60: 168-176.
[14] Kim K K, Sheppard D, Chapman H A. TGF-β1 Signaling and Tissue Fibrosis[J]. Cold Spring Harbor Perspectives in Biology, 2018, 10(4): a022293.
[15] Matsuzaki K. Smad phospho-isoforms direct context-dependent TGF-β signaling[J]. Cytokine & Growth Factor Reviews, 2013, 24(4): 385-399.
[16] 张冲. 黄芪甲苷调控pSmad3C/3L抗小鼠肝纤维化作用机制研究[D]. 安徽医科大学, 2021.
[17] 王永娟, 谢肖立, 姜慧卿. 肝纤维化中上皮间质转化的调控及靶向治疗的研究进展[J]. 临床肝胆病杂志, 2021, 37(1): 165-168.
[18] 戴鸿志, 安祯祥, 黄丹, 等. 黄芪甲苷对肝纤维化模型大鼠的改善作用机制研究[J]. 中国现代应用药学, 2022, 39(10): 1268-1274.
[19] Bessone F, Razori M V, Roma M G. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cellular and molecular life sciences: CMLS, 2019, 76(1): 99-128.
[20] 丁棋柯, 戴玮, 吴媛媛, 等. 黄芪甲苷抗实验性非酒精性脂肪肝病的研究进展[J]. 中成药, 2021, 43(08): 2135-2141.
[21] Pappachan J M, Babu S, Krishnan B, et al. Non-alcoholic Fatty Liver Disease: A Clinical Update[J]. Journal of Clinical and Translational Hepatology, 2017, 5(4): 384-393.
[22] Chalasani N, Younossi Z, Lavine J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases[J]. Hepatology (Baltimore, Md.), 2018, 67(1): 328-357.
[23] Hu J, Hong W, Yao K-N, et al. Ursodeoxycholic acid ameliorates hepatic lipid metabolism in LO2 cells by regulating the AKT/mTOR/SREBP-1 signaling pathway[J]. World Journal of Gastroenterology, 2019, 25(12): 1492-1501.
[24] Xie X, Yan D, Li H, et al. Enhancement of Adiponectin Ameliorates Nonalcoholic Fatty Liver Disease via Inhibition of FoxO1 in Type I Diabetic Rats[J]. Journal of Diabetes Research, 2018, 2018: 6254340.
[25] Carling D. AMPK signalling in health and disease[J]. Current Opinion in Cell Biology, 2017, 45: 31-37.
[26] 韦晓虹, 杨小颖, 胡芳, 等. 黄芪甲苷激活AMPK改善非酒精性脂肪肝病小鼠肝脏脂质沉积[J]. 药品评价, 2021, 18(20): 1230-1234.
[27] Zhou B, Zhou D-L, Wei X-H, et al. Astragaloside IV attenuates free fatty acid-induced ER stress and lipid accumulation in hepatocytes via AMPK activation[J]. Acta Pharmacologica Sinica, 2017, 38(7): 998-1008.
[28] Wang C, Li Y, Hao M, et al. Astragaloside IV Inhibits Triglyceride Accumulation in Insulin-Resistant HepG2 Cells via AMPK-Induced SREBP-1c Phosphorylation[J]. Frontiers in Pharmacology, 2018, 9: 345.
[29] Rains J L, Jain S K. Oxidative stress, insulin signaling, and diabetes[J]. Free Radical Biology & Medicine, 2011, 50(5): 567-575.
[30] Vomund S, Schäfer A, Parnham M J, et al. Nrf2, the Master Regulator of Anti-Oxidative Responses[J]. International Journal of Molecular Sciences, 2017, 18(12): 2772.
[31] Li L, Huang W, Wang S, et al. Astragaloside IV Attenuates Acetaminophen-Induced Liver Injuries in Mice by Activating the Nrf2 Signaling Pathway[J]. Molecules (Basel, Switzerland), 2018, 23(8): 2032.
[32] González-Rodríguez A, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD[J]. Cell Death & Disease, 2014, 5(4): e1179.
[33] Basseri S, Austin R C. ER stress and lipogenesis: a slippery slope toward hepatic steatosis[J]. Developmental Cell, 2008, 15(6): 795-796.
[34] Luo Z, Wang Y, Xue M, et al. Astragaloside IV ameliorates fat metabolism in the liver of ageing mice through targeting mitochondrial activity[J]. Journal of Cellular and Molecular Medicine, 2021, 25(18): 8863-8876.
[35] Ding L, Zhang F, Zhao M-X, et al. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity[J]. Scientific Reports, 2016, 6: 34374.
[36] Morigny P, Houssier M, Mouisel E, et al. Adipocyte lipolysis and insulin resistance[J]. Biochimie, 2016, 125: 259-266.
[37] Du Q, Zhang S, Li A, et al. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice[J]. Frontiers in Physiology, 2018, 9: 15.
[38] Du Q, Zhang S, Li A, et al. Astragaloside IV Inhibits Adipose Lipolysis and Reduces Hepatic Glucose Production via Akt Dependent PDE3B Expression in HFD-Fed Mice[J]. Frontiers in Physiology, 2018, 9: 15.
[39] Zhang H, Ge Z, Tang S, et al. Erythropoietin ameliorates PA-induced insulin resistance through the IRS/AKT/FOXO1 and GSK-3β signaling pathway, and inhibits the inflammatory response in HepG2 cells[J]. Molecular Medicine Reports, 2017, 16(2): 2295-2301.
[40] Hou N, Mai Y, Qiu X, et al. Carvacrol Attenuates Diabetic Cardiomyopathy by Modulating the PI3K/AKT/GLUT4 Pathway in Diabetic Mice. Front Pharmacol. 2019, 12: 10-998.
[41] 张海云, 常香荣. 黄芪甲苷通过抑制JAK2/STAT3信号通路减轻重症急性胰腺炎大鼠肝损伤[J]. 中国病理生理杂志, 2016, 32(6): 984-989.
[42] 徐源, 黄存东, 李竹青, 等. 黄芪甲苷对糖尿病大鼠肝损伤保护作用及其机制研究[J]. 安徽医科大学学报, 2017, 52(12): 1823-1829.
[43] 季天娇, 王中元, 朱云峰, 等. 黄芪甲苷调节PI3K/Akt/ FoxO1通路抑制糖尿病大鼠肝糖异生[J]. 中国实验方剂学杂志, 2020, 26(1): 78-86.
[44] 梁小愉. 黄芪甲苷通过抑制肝脏炎症、氧化应激和细胞凋亡防治非酒精性脂肪肝的实验研究[D]. 南昌大学, 2021.
[45] Ham J R, Lee H-I, Choi R-Y, et al. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice[J]. Food & Function, 2016, 7(2): 689-697.
[46] 张秋瓒. 黄芪甲苷基于TLR4/NF-κB信号通路对非酒精性脂肪性肝病作用机制研究[D]. 天津医科大学, 2019.
[47] Liang X-Y, Hong F-F, Yang S-L. Astragaloside IV Alleviates Liver Inflammation, Oxidative Stress and Apoptosis to Protect Against Experimental Non-Alcoholic Fatty Liver Disease[J]. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, 14: 1871-1883.
[48] 张新. 铁死亡引发小鼠非酒精性脂肪肝病的分子机制及黄芪甲苷的调控作用研究[D]. 辽宁中医药大学, 2022.
[49] Zhai Y, Zhou W, Yan X, et al. Astragaloside IV ameliorates diet-induced hepatic steatosis in obese mice by inhibiting intestinal FXR via intestinal flora remodeling[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 107: 154444.
[50] 于乐成, 茅益民, 陈成伟. 药物性肝损伤诊治指南[J]. 临床肝胆病杂志, 2015, 31(11): 1752-1769.
[51] 于乐成, 茅益民, 陈成伟. 药物性肝损伤诊治指南[J]. 实用肝脏病杂志, 2017, 20(2): 257-274.
[52] 刘畅, 张乐, 朱耀辉, 等. 黄芪甲苷缓解对乙酰氨基酚诱导的肝脏氧化应激损伤[J]. 安徽科技学院学报, 2019, 33(05): 34-39.
[53] Li L, Huang W, Wang S, et al. Astragaloside IV Attenuates Acetaminophen-Induced Liver Injuries in Mice by Activating the Nrf2 Signaling Pathway[J]. Molecules (Basel, Switzerland), 2018, 23(8): 2032.
[54] 徐飞, 李伟荣. 黄芪甲苷对CCL_4所致肝损伤大鼠的保护作用[J]. 实用肝脏病杂志, 2019, 22(06): 808-811.
[55] 孙克诚, 何亚兰, 张乐, 等. 黄芪甲苷对扑热息痛诱导肝损伤小鼠炎症因子表达的影响[J]. 安徽科技学院学报, 2019, 33(06): 33-37.
[56] 佟宇, 王晶. 黄芪甲苷对脂多糖诱导肝细胞损伤保护作用[J]. 中国公共卫生, 2014, 30(06): 753-755.
[57] Siegel R L, Miller K D, Fuchs H E, et al. Cancer Statistics, 2021[J]. CA: a cancer journal for clinicians, 2021, 71(1): 7-33.
[58] Khemlina G, Ikeda S, Kurzrock R. The biology of Hepatocellular carcinoma: implications for genomic and immune therapies[J]. Molecular Cancer, 2017, 16(1): 149.
[59] Suwa K, Yamaguchi T, Yoshida K, et al. Smad Phospho-Isoforms for Hepatocellular Carcinoma Risk Assessment in Patients with Nonalcoholic Steatohepatitis[J]. Cancers, 2020, 12(2): 286.
[60] Yoshida K, Matsuzaki K, Murata M, et al. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis[J]. Cancers, 2018, 10(6): 183.
[61] Gong Y, Li D, Li L, et al. Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 2021, 147: 111912.
[62] Murata M, Yoshida K, Yamaguchi T, et al. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma[J]. World Journal of Gastroenterology, 2014, 20(41): 15018-15027.
[63] Brahma M K, Gilglioni E H, Zhou L, et al. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges[J]. Oncogene, 2021, 40(33): 5155-5167.
[64] Keleku-Lukwete N, Suzuki M, Yamamoto M. An Overview of the Advantages of KEAP1-NRF2 System Activation During Inflammatory Disease Treatment[J]. Antioxidants & Redox Signaling, 2018, 29(17): 1746-1755.
[65] Medina M V, Sapochnik D, Garcia Solá M, et al. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond[J]. Antioxidants & Redox Signaling, 2020, 32(14): 1033-1044.
[66] Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cellular and molecular life sciences: CMLS, 2016, 73(17): 3221-3247.
[67] 李利利. 黄芪甲苷抗肝癌作用及调控pSmad3C/L和Nrf2/HO-1信号通路的探究[D]. 安徽医科大学, 2022.
[68] Zhang C, Li L, Hou S, et al. Astragaloside IV inhibits hepatocellular carcinoma by continually suppressing the development of fibrosis and regulating pSmad3C/3L and Nrf2/HO-1 pathways[J]. Journal of Ethnopharmacology, 2021, 279: 114350.
[69] Nieto M A. Context-specific roles of EMT programmes in cancer cell dissemination[J]. Nature Cell Biology, 2017, 19(5): 416-418.
[70] Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors[J]. Nature Cell Biology, 2014, 16(6): 488-494.
[71] Hsu C-Y, Lin C-H, Jan Y-H, et al. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated Epithelial-Mesenchymal Transition[J]. American Journal of Respiratory and Critical Care Medicine, 2016, 193(8): 869-880.
[72] Lee S C, Kim O-H, Lee S K, et al. IWR-1 inhibits epithelial-mesenchymal transition of colorectal cancer cells through suppressing Wnt/β-catenin signaling as well as survivin expression[J]. Oncotarget, 2015, 6(29): 27146-27159.
[73] Gu Y, Wang Q, Guo K, et al. TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling[J]. The Journal of Pathology, 2016, 239(1): 60-71.
[74] Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways[J]. Oncogene, 2005, 24(50): 7443-7454.
[75] Soutto M, Peng D, Katsha A, et al. Activation of β-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis[J]. Gut, 2015, 64(7): 1028-1039.
[76] Qin C-D, Ma D-N, Ren Z-G, et al. Astragaloside IV inhibits metastasis in hepatoma cells through the suppression of epithelial-mesenchymal transition via the Akt/GSK-3β/β-catenin pathway[J]. Oncology Reports, 2017, 37(3): 1725-1735.
[77] Cui X, Jiang X, Wei C, et al. Astragaloside IV suppresses development of hepatocellular carcinoma by regulating miR-150-5p/β-catenin axis[J]. Environmental Toxicology and Pharmacology, 2020, 78: 103397.
[78] Li Y, Ye Y, Chen H. Astragaloside IV inhibits cell migration and viability of hepatocellular carcinoma cells via suppressing long noncoding RNA ATB[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2018, 99: 134-141.
[79] Kao S T, Yeh C C, Hsieh C C, et al. The Chinese medicine Bu-Zhong-Yi-Qi-Tang inhibited proliferation of hepatoma cell lines by inducing apoptosis via G0/G1 arrest[J]. Life Sciences, 2001, 69(13): 1485-1496.
[80] Zhou J, Liu M, Aneja R, et al. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase[J]. Cancer Research, 2006, 66(1): 445-452.
[81] Wang P-P, Luan J-J, Xu W-K, et al. Astragaloside IV downregulates the expression of MDR1 in Bel‑7402/FU human hepatic cancer cells by inhibiting the JNK/c‑Jun/AP‑1 signaling pathway[J]. Molecular Medi-cine Reports, 2017, 16(3): 2761-2766.
[82] Lili Qin,Yanxia Wang,Yingying Liang,Qiang Li,Xuerong Xie,Honglian Zhang.Astragaloside IV Alleviates Atorvastatin-Induced Hepatotoxicity via AMPK/SIRT1 Pathway.Pharmacology.2023;108(1):74-82.
[83] Min L, Wang H, Qi H. Astragaloside IV inhibits the progression of liver cancer by modulating macrophage polarization through the TLR4/NF-κB/STAT3 signaling pathway[J]. American Journal of Translational Research, 2022, 14(3): 1551-1566.
[84] Guo H, Zhao J, Wu C. Astragaloside IV-enhanced anti-hepatocarcinoma immunity of dendritic cells[J]. Asian Journal of Surgery, 2022, 45(5): 1216-1218.
[85] Jiangbo Z, Xuying W, Yuping Z, et al.Effect of astragaloside IV on the embryo-fetal development of Sprague-Dawley rats and New Zealand White rabbits[J]. Journal of applied toxicology: JAT, 2009, 29(5): 381-385.
[86] 朱玉平, 张天宝, 万旭英, 等. 中药黄芪甲苷对SD大鼠致畸性的研究[J]. 中成药, 2010, 32(10): 1783-1785.
[87] 曹静, 罗时成, 谈笑, 等. 黄芪甲苷对成纤维细胞的毒性研究[J]. 蚌埠医学院学报, 2021, 46(11): 1500-1506.