参考文献 References
[1] Patel S G, Karlitz J J, Yen T, et.al. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection[J]. The Lancet Gastroenterology & Hepatology, 2022, 7(3): 262–274.
[2] Dekker E, Tanis P J, Vleugels J L A, et.al. Colorectal cancer[J]. The Lancet, 2019, 394(10207): 1467–1480.
[3] Pakarinen S, Varpe P, Carpelan A, et.al. Mobile-CEA – A Novel Surveillance Method for Patients with Colorectal Cancer[J]. Cancer Control,2022;29:10732748221102180.
[4] Selven H, Busund L-T R, Andersen S, et.al. High expression of microRNA-126 relates to favorable prognosis for colon cancer patients[J]. Scientific Reports, 2021, 11(1): 9592.
[5] Wang Y, Lu J-H, Wu Q-N, et.al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer[J]. Molecular Cancer, 2019, 18(1): 174.
[6] Li J, Liu C. Coding or Noncoding, the Converging Concepts of RNAs[J]. Frontiers in Genetics, 2019, 10: 496.
[7] Wang L, Cho K B, Li Y, et.al. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer[J]. International Journal of Molecular Sciences, 2019, 20(22): 5758.
[8] Liang R, Zhi Y, Zheng G, et.al. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization[J]. OncoTargets and Therapy, 2018;12:157-168.
[9] Fagerberg L, Hallström B M, Oksvold P, et.al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics[J]. Molecular & Cellular Proteomics, 2014, 13(2): 397–406.
[10] Xue D, Xue YF, Zhang LJ, Cui LZ, Guo KQ, Lian J. LINC00641 induces the malignant progression of colorectal carcinoma through the miRNA-424-5p/PLSCR4 feedback loop. Eur Rev Med Pharmacol Sci. 2021;25(2):749-757.
[11] Hong Z, Pan J, Chen M, et.al. Long Intergenic Noncoding RNA 00641 Promotes Growth and Invasion of Colorectal Cancer through Regulating miR-450b-5p/GOLPH3 Axis[J]. Z. Kang. Journal of Oncology, 2022, 2022: 1–16.
[12] Ni T, Li Y, Guo D, Tan L, Xiao Z, Shi Y. LncRNA DNAJC3-AS1 promotes the biological functions of papillary thyroid carcinoma via regulating the microRNA-27a-3p/CCBE1 axis. Cell Biol Int. 2023;47(3):539-547.
[13] Tang Y, Tang R, Tang M, et.al. LncRNA DNAJC3-AS1 Regulates Fatty Acid Synthase via the EGFR Pathway to Promote the Progression of Colorectal Cancer[J]. Frontiers in Oncology, 2021, 10: 604534.
[14] 曹志军,张智伟,李志国, 李硕.长链非编码RNA DNAJC3-AS1、微RNA-214-3p在结肠癌组织、结肠腺瘤性息肉中的表达水平及临床意义[J]. 安徽医药, 2024, 28(02): 366-370.
[15] Han B, Ge Y, Cui J, et.al. Down-regulation of lncRNA DNAJC3-AS1 inhibits colon cancer via regulating miR-214-3p/LIVIN axis[J]. Bioengineered, 2020, 11(1): 524–535.
[16] Pal G, Ogunwobi O O. Copy number-based quantification assay for non-invasive detection of PVT1-derived transcripts[J]. D. Nie. PLOS ONE, 2019, 14(12): e0226620.
[17] Martínez-Barriocanal Á, Arango D, Dopeso H. PVT1 Long Non-coding RNA in Gastrointestinal Cancer. Front Oncol. 2020,10(38).
[18] Mai S, Zhang Z, Mi W. Upregulation of circ_PVT1 and circ_001569 Indicate Unfavorable Prognosis in Colorectal Cancer[J]. 2021, 51(1).
[19] 李韵, 金子慧, 张瑞瑞, et.al. 环状RNA PVT1促进结直肠癌细胞的增殖并抑制凋亡[J]. 中国生物化学与分子生物学报, 2021, 37(9): 1241–1249.
[20] Zeng X, Liu Y, Zhu H, et.al. Downregulation of miR-216a-5p by long noncoding RNA PVT1 suppresses colorectal cancer progression via modulation of YBX1 expression[J]. Cancer Management and Research, 2019;11:6981-6993.
[21] Guo H, Zhuang K, Ding N, et.al. High-fat diet induced cyclophilin B enhances STAT3/lncRNA-PVT1 feedforward loop and promotes growth and metastasis in colorectal cancer[J]. Cell Death & Disease, 2022, 13(10): 883.
[22] Zhang M, Wang W, Li T, et al. Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother. 2016;80:73-79.
[23] Xu Y, Bao Y, Qiu G, et.al. METTL3 promotes proliferation and migration of colorectal cancer cells by increasing SNHG1 stability[J]. Molecular Medicine Reports, 2023, 28(5): 217.
[24] Bai J, Xu J, Zhao J, et.al. lncRNA SNHG1 cooperated with miR‐497/miR‐195‐5p to modify epithelial–mesenchymal transition underlying colorectal cancer exacerbation[J]. Journal of Cellular Physiology, 2020, 235(2): 1453–1468.
[25] Huang Q, Yang Z, Tian JH, et al. LncSNHG1 Promoted CRC Proliferation through the miR-181b-5p/SMAD2 Axis. J Oncol. 2022;2022:4181730.
[26] 曹强.长链非编码RNA SNHG1对结直肠癌增殖、迁移的影响及调控机制[J].黑龙江医学,2024,48(04):403-406.
[27] Shen W, Yu Q, Pu Y, Xing C. Upregulation of Long Noncoding RNA MALAT1 in Colorectal Cancer Promotes Radioresistance and Aggressive Malignance. Int J Gen Med. 2022;15:8365-8380.
[28] Yang F, Gong S, Qiu D. Circ‐ MALAT1 accelerates cell proliferation and epithelial mesenchymal transformation of colorectal cancer through regulating MIR ‐506‐3p/ KAT6B axis[J]. The Kaohsiung Journal of Medical Sciences, 2023, 39(9): 862–872.
[29] Cao L, Yan G, Yu S, et al. Associations of MALAT1 and its functional single nucleotide polymorphisms with cancer. Pathol Res Pract. 2022;236:153988.
[30] Xu J, Xiao Y, Liu B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J Exp Clin Cancer Res. 2020;39(1):54.
[31] Ghafouri-Fard S, Kamali M J, Abak A, et.al. LncRNA ZFAS1: Role in tumorigenesis and other diseases[J]. Biomedicine & Pharmacotherapy, 2021, 142: 111999.
[32] O’Brien S J, Fiechter C, Burton J, et.al. Long non-coding RNA ZFAS1 is a major regulator of epithelial-mesenchymal transition through miR-200/ZEB1/E-cadherin, vimentin signaling in colon adenocarcinoma[J]. Cell Death Discovery, 2021, 7(1): 61.
[33] Deng H, Wang M, Xu Q, et.al. ZFAS1 Promotes Colorectal Cancer Metastasis Through Modulating miR-34b/SOX4 Targeting[J]. Cell Biochemistry and Biophysics, 2021, 79(2): 387–396.
[34] Wang H, Chen Y, Liu Y, et.al. The lncRNA ZFAS1 regulates lipogenesis in colorectal cancer by binding polyadenylate-binding protein 2 to stabilize SREBP1 mRNA[J]. Molecular Therapy - Nucleic Acids, 2022, 27: 363–374.
[35] Zhang L, Yang J, Luo Y, et.al. A p53/lnc‐Ip53 Negative Feedback Loop Regulates Tumor Growth and Chemoresistance[J]. Advanced Science, 2020, 7(21): 2001364.
[36] Zhang L, Zhang J, Xuan X, et.al. A p53/LINC00324 positive feedback loop suppresses tumor growth by counteracting SET-mediated transcriptional repression[J]. Cell Reports, 2023, 42(8): 112833.
[37] Ni X,Xie JK,Wang H,Song HR. Knockdown of long non-coding RNA LINC00324 inhibits proliferation, migration and invasion of colorectal cancer cell via targeting miR-214-3p[J] Eur Rew Med Pharmacol Sci. 2019;23(24):10740-10750.
[38] Gong X, Ning B. Five lncRNAs Associated With Prostate Cancer Prognosis Identified by Coexpression Network Analysis[J]. Technology in Cancer Research & Treatment, 2020, 19: 153303382096357.
[39] Liu Y, Yang B, Su Y, et.al. Downregulation of long noncoding RNA LINC00683 associated with unfavorable prognosis in prostate cancer based on TCGA[J]. Journal of Cellular Biochemistry, 2019, 120(8): 14165–14174.
[40] Pan H, Yu T, Sun L, et.al. LncRNA FENDRR-mediated tumor suppression and tumor-immune microenvironment changes in non-small cell lung cancer[J]. Translational Cancer Research, 2020, 9(6): 3946–3959.
[41] Yin S L, Xiao F, Liu Y F, et.al. Long non‐coding RNA FENDRR restrains the aggressiveness of CRC via regulating miR‐18a‐5p/ING4 axis[J]. Journal of Cellular Biochemistry, 2020, 121(8–9): 3973–3985.
[42] Cheng C, Li H, Zheng J, et.al. FENDRR Sponges miR-424-5p to Inhibit Cell Proliferation, Migration and Invasion in Colorectal Cancer[J]. Technology in Cancer Research & Treatment, 2020, 19: 153303382098010.
[43] Gong F, Dong D, Zhang T, et.al. Long non-coding RNA FENDRR attenuates the stemness of non-small cell lung cancer cells via decreasing multidrug resistance gene 1 (MDR1) expression through competitively binding with RNA binding protein HuR[J]. European Journal of Pharmacology, 2019, 853: 345–352.
[44] Zhang Q, Ding Z, Wan L, et.al. Comprehensive analysis of the long noncoding RNA expression profile and construction of the lncRNA-mRNA co-expression network in colorectal cancer[J]. Cancer Biology & Therapy, 2020, 21(2): 157–169.
[45] Shen Y, Qi L, Li Y, et.al. The Downregulation of lncRNA pgm5-as1 Inhibits the Proliferation and Metastasis Via Increasing miR-484 Expression in Colorectal Cancer[J]. Cancer Biotherapy and Radiopharmaceuticals, 2021, 36(2): 220–229.
[46] Zhou B, Yi F, Chen Y. Reduced long noncoding RNA PGM5-AS1 facilitated proliferation and invasion of colorectal cancer through sponging miR-100-5p[J] .Eur Rew Med Pharmacol Sci.2020;24(15):7972-7981.
[47] Wang M, Zhang Z, Pan D, et.al. Circulating lncRNA UCA1 and lncRNA PGM5-AS1 act as potential diagnostic biomarkers for early-stage colorectal cancer[J]. Bioscience Reports, 2021, 41(7): BSR20211115.
[48] Stamou M, Ng S-Y, Brand H, et.al. A Balanced Translocation in Kallmann Syndrome Implicates a Long Noncoding RNA, RMST, as a GnRH Neuronal Regulator[J]. The Journal of Clinical Endocrinology & Metabolism, 2020, 105(3): e231–e244.
[49] Chen S, Ji L, Wang Y, et.al. lncRNA RMST suppresses the progression of colorectal cancer by competitively binding to miR-27a-3p/RXRα axis and inactivating Wnt signaling pathway[J] . 2023;55(5):726-735.