CSCIED

期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Clinical Research. 2023; 7: (3) ; 1-8 ; DOI: 10.12208/j.ijcr.20230108.

Regulation mechanism of adipocyte differentiation and its effect on metabolism
脂肪细胞分化的调控机制及其对机体代谢的影响

作者: 李滟镕, 孙一凡, 余飘, 于莉莉 *

新乡医学院基础医学院 河南新乡 新乡市肝肠肿瘤免疫检查点药物研发工程中心 河南新乡

新乡医学院基础医学院 河南新乡

*通讯作者: 于莉莉,单位:新乡医学院基础医学院 河南新乡 新乡市肝肠肿瘤免疫检查点药物研发工程中心 河南新乡;

发布时间: 2023-03-19 总浏览量: 802

摘要

肥胖是目前世界性的健康问题之一,常伴随有胰岛素抵抗、血脂异常、肝脂肪变性、凝血病和高血压等。肥胖是由于脂肪细胞的数目增多或单个细胞体积增大引起的。脂肪细胞在能量储存中起到了关键作用,同时对机体能量代谢平衡也产生了重要影响。事实上,脂肪细胞的增大增多可以有效地隔离脂质防止对其他组织,如肌肉、肝脏和心脏中的脂质堆积,这也与肥胖相关的病理状态下维持代谢功能密切相关。这篇综述将对脂肪细胞分化的调控机制进行探讨,并讨论其对机体代谢平衡的影响。

关键词: 肥胖;脂肪细胞;细胞分化;代谢平衡

Abstract

Obesity is one of the worldwide health problems, which is often accompanied by insulin resistance, dyslipidemia, hepatic steatosis, coagulation and hypertension. Adipocytes not only play a key role in energy storage, but also have an important impact on the balance of energy metabolism. In fact, the increase of adipocytes can effectively isolate lipids and prevent the accumulation of lipids in other tissues, such as muscle, liver and heart, which is also closely related to the maintenance of metabolic function in obesity-related pathological conditions. This review will explore the regulatory mechanism of adipocyte differentiation and discuss the effect of adipocytes on metabolic balance.

Key words: Obesity;Adipocyte;Cell differentiation;Metabolic balance

参考文献 References

[1] ENGIN A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation [J]. Adv Exp Med Biol, 2017, 960: 221-45.

[2] ANDERSSON D P, ARNER E, HOGLING D E, et al. Abdominal subcutaneous adipose tissue cellularity in men and women [J]. Int J Obes (Lond), 2017, 41(10): 1564-9.

[3] WANG Q A, TAO C, GUPTA R K, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration [J]. Nat Med, 2013, 19(10): 1338-44.

[4] VISHVANATH L, MACPHERSON K A, HEPLER C, et al. Pdgfrbeta+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice [J]. Cell Metab, 2016, 23(2): 350-9.

[5] ZHU Q, AN Y A, KIM M, et al. Suppressing adipocyte inflammation promotes insulin resistance in mice [J]. Mol Metab, 2020, 39: 101010.

[6] CATALDI S, APRILE M, MELILLO D, et al. TNFalpha Mediates Inflammation-Induced Effects on PPARG Splicing in Adipose Tissue and Mesenchymal Precursor Cells [J]. Cells, 2021, 11(1).

[7] YE R Z, RICHARD G, GEVRY N, et al. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations [J]. Endocr Rev, 2022, 43(1): 35-60.

[8] SUN K, WERNSTEDT ASTERHOLM I, KUSMINSKI C M, et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction [J]. Proc Natl Acad Sci U S A, 2012, 109(15): 5874-9.

[9] FANG H, JUDD R L. Adiponectin Regulation and Function [J]. Compr Physiol, 2018, 8(3): 1031-63.

[10] ZHU Q, SCHERER P E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease [J]. Nat Rev Nephrol, 2018, 14(2): 105-20.

[11] ACQUARONE E, MONACELLI F, BORGHI R, et al. Resistin: A reappraisal [J]. Mech Ageing Dev, 2019, 178: 46-63.

[12] FASSHAUER M, BLUHER M. Adipokines in health and disease [J]. Trends Pharmacol Sci, 2015, 36(7): 461-70.

[13] YORE M M, SYED I, MORAES-VIEIRA P M, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects [J]. Cell, 2014, 159(2): 318-32.

[14] HAMMARSTEDT A, SYED I, VIJAYAKUMAR A, et al. Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids [J]. Sci Rep, 2018, 8(1): 15757.

[15] NGUYEN T D, WATANABE A, BURLEIGH S, et al. Monobutyrin and monovalerin improve gut-blood-brain biomarkers and alter gut microbiota composition in high-fat fed apolipoprotein-E-knockout rats [J]. Sci Rep, 2022, 12(1): 15454.

[16] XIA J Y, HOLLAND W L, KUSMINSKI C M, et al. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis [J]. Cell Metab, 2015, 22(2): 266-78.

[17] SANCHEZ-RAMIREZ E, UNG T P L, ALARCON DEL CARMEN A, et al. Coordinated metabolic transitions and gene expression by NAD+ during adipogenesis [J]. J Cell Biol, 2022, 221(12).

[18] ZHAO J, ZHOU A, QI W. The Potential to Fight Obesity with Adipogenesis Modulating Compounds [J]. Int J Mol Sci, 2022, 23(4).

[19] GAO Z, DAQUINAG A C, SU F, et al. PDGFRalpha/PDGFRbeta signaling balance modulates progenitor cell differentiation into white and beige adipocytes [J]. Development, 2018, 145(1).

[20] GUPTA R K, ARANY Z, SEALE P, et al. Transcriptional control of preadipocyte determination by Zfp423 [J]. Nature, 2010, 464(7288): 619-23.

[21] ROH H C, KUMARI M, TALEB S, et al. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARgamma activity and elevated TGFbeta-SMAD signaling [J]. Mol Metab, 2020, 42: 101086.

[22] SCHUPP M, LAZAR M A. Endogenous ligands for nuclear receptors: digging deeper [J]. J Biol Chem, 2010, 285(52): 40409-15.

[23] HALL J A, RAMACHANDRAN D, ROH H C, et al. Obesity-Linked PPARgamma S273 Phosphorylation Promotes Insulin Resistance through Growth Differentiation Factor 3 [J]. Cell Metab, 2020, 32(4): 665-75 e6.

[24] SONG T, KUANG S. Adipocyte dedifferentiation in health and diseases [J]. Clin Sci (Lond), 2019, 133(20): 2107-19.

[25] LI H L, WU X, XU A, et al. A-FABP in Metabolic Diseases and the Therapeutic Implications: An Update [J]. Int J Mol Sci, 2021, 22(17).

[26] PLIKUS M V, GUERRERO-JUAREZ C F, ITO M, et al. Regeneration of fat cells from myofibroblasts during wound healing [J]. Science, 2017, 355(6326): 748-52.

[27] BLUHER M, MICHAEL M D, PERONI O D, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance [J]. Dev Cell, 2002, 3(1): 25-38.

[28] GHABEN A L, SCHERER P E. Adipogenesis and metabolic health [J]. Nat Rev Mol Cell Biol, 2019, 20(4): 242-58.

[29] SON J W, KIM M K, PARK Y M, et al. Association of serum bone morphogenetic protein 4 levels with obesity and metabolic syndrome in non-diabetic individuals [J]. Endocr J, 2011, 58(1): 39-46.

[30] HOKIMOTO S, FUNAKOSHI-TAGO M, TAGO K. Identification of DDX5 as an indispensable activator of the glucocorticoid receptor in adipocyte differentiation [J]. FEBS J, 2022.

[31] HACKETT R A, STEPTOE A, KUMARI M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study [J]. J Clin Endocrinol Metab, 2014, 99(12): 4625-31.

[32] MANN J P, SAVAGE D B. What lipodystrophies teach us about the metabolic syndrome [J]. J Clin Invest, 2019, 129(10): 4009-21.

[33] BROEKEMA M F, MASSINK M P G, DE LIGT J, et al. A Single Complex Agpat2 Allele in a Patient With Partial Lipodystrophy [J]. Front Physiol, 2018, 9: 1363.

[34] PATNI N, VUITCH F, GARG A. Postmortem Findings in a Young Man With Congenital Generalized Lipodystrophy, Type 4 Due to CAVIN1 Mutations [J]. J Clin Endocrinol Metab, 2019, 104(3): 957-60.

[35] LAVER T W, PATEL K A, COLCLOUGH K, et al. PLIN1 Haploinsufficiency Is Not Associated With Lipodystrophy [J]. J Clin Endocrinol Metab, 2018, 103(9): 3225-30.

[36] SHIAU M Y, CHUANG P H, YANG C P, et al. Mechanism of Interleukin-4 Reducing Lipid Deposit by Regulating Hormone-Sensitive Lipase [J]. Sci Rep, 2019, 9(1): 11974.

[37] RUBIO-CABEZAS O, PURI V, MURANO I, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC [J]. EMBO Mol Med, 2009, 1(5): 280-7.

[38] ROHM M, ZEIGERER A, MACHADO J, et al. Energy metabolism in cachexia [J]. EMBO Rep, 2019, 20(4).

[39] DUONG M N, GENESTE A, FALLONE F, et al. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance [J]. Oncotarget, 2017, 8(34): 57622-41.

[40] WANG R, WEI L, WAZIR J, et al. Curcumin treatment suppresses cachexia-associated adipose wasting in mice by blocking the cAMP/PKA/CREB signaling pathway [J]. Phytomedicine, 2023, 109: 154563.

[41] ZHANG Y, XIE Y, BERGLUND E D, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice [J]. Elife, 2012, 1: e00065.

[42] DUTCHAK P A, KATAFUCHI T, BOOKOUT A L, et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones [J]. Cell, 2012, 148(3): 556-67.

[43] MEYER L K, CIARALDI T P, HENRY R R, et al. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity [J]. Adipocyte, 2013, 2(4): 217-26.

[44] YUAN Z, LI Q, LUO S, et al. PPARgamma and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells [J]. Curr Stem Cell Res Ther, 2016, 11(3): 216-25.

引用本文

李滟镕, 孙一凡, 余飘, 于莉莉, 脂肪细胞分化的调控机制及其对机体代谢的影响[J]. 国际临床研究杂志, 2023; 7: (3) : 1-8.