参考文献 References
[1] Adams CM, Reitz J, De Brabander JK, et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs[J] .BiolChem, 2004, 279(50):52772-52780.
[2] Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap[J]. Annu Rev Biochem, 2018, 87:783-807.
[3] Song Y, Liu J, Zhao K, et al. Cholesterol-induced toxicity: An integrated view of the role of cholesterol in multiple diseases[J]. Cell Metab, 2021, 33(10):1911-1925.
[4] Kostopoulou F, Malizos KN, Papathanasiou I, et al. MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes [J]. Arthritis Res Ther, 2015, 17(1):42.
[5] Kostopoulou F, Gkretsi V, Malizos KN, et al. Central role of SREBP-2 in the pathogenesis of osteoarthritis[J]. PLoS One, 2012, 7(5):e35753.
[6] Qiu XM, Jin CT, Wang W. Association between single nucleotide polymorphisms of sterol regulatory element binding protein-2 gene and risk of knee osteoarthritis in a Chinese Han population[J].Int Med Res, 2014, 42(2): 320-328.
[7] Choi WS, Lee G, Song WH, et al. The CH25H- CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J]. Nature, 2019, 566(7743): 254-258.
[8] Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(1):33-42.
[9] Simopoulou T, Malizos KN, Tsezou A. Lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) expression in human articular chondrocytes[J]. Clin Exp Rheumatol, 2007, 25(4):605-612.
[10] Edwards PA, Kennedy MA, Mak PA. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis[J]. Vascul Pharmacol, 2002, 38(4):249-256.
[11] Gentili C, Tutolo G, Pianezzi A, et al. Cholesterol secretion and homeostasis in chondrocytes: a liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein A1 expression[J]. Matrix Biol, 2005, 24(1):35-44.
[12] Yu XH, Tang CK. ABCA1, ABCG1, and Cholesterol Homeostasis[J]. Adv Exp Med Biol, 2022, 1377:95-107.
[13] He H, Lu M, Shi H, et al. Vaspin regulated cartilage cholesterol metabolism through miR155/LXRα and participated in the occurrence of osteoarthritis in rats[J]. Life Sci, 2021, 269:119096.
[14] Tsezou A, Iliopoulos D, Malizos KN, et al. Impaired expression of genes regulating cholesterol efflux in human osteoarthritic chondrocytes[J]. J Orthop Res, 2010, 28(8):1033-1039.
[15] Collins-Racie LA, Yang Z, Arai M, et al. Global analysis of nuclear receptor expression and dysregulation in human osteoarthritic articular cartilage: reduced LXR signaling contributes to catabolic metabolism typical of osteoarthritis[J]. Osteoarthritis Cartilage, 2009, 17(7):832-842.
[16] Oliviero F, Sfriso P, Baldo G, et al. Apolipoprotein A-I and cholesterol in synovial fluid of patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis[J]. Clin Exp Rheumatol, 2009, 27(1):79-83.
[17] Zhang K, Ji Y, Dai H, et al. High-Density Lipoprotein Cholesterol and Apolipoprotein A1 in Synovial Fluid: Potential Predictors of Disease Severity of Primary Knee Osteoarthritis[J]. Cartilage, 2021, 13(1_suppl): 1465S-1473S.
[18] Villalvilla A, Larrañaga-Vera A, Lamuedra A, et al. Modulation of the Inflammatory Process by Hypercholesterolemia in Osteoarthritis[J]. Front Med (Lausanne), 2020, 7:566250.
[19] Gkretsi V, Simopoulou T, Tsezou A. Lipid metabolism and osteoarthritis: lessons from atherosclerosis[J]. Prog Lipid Res, 2011, 50(2):133-140.
[20] Goyal N, Gupta M, Joshi K. Ultrastructure of chondrocytes in osteoarthritic femoral articular cartilage[J]. Kathmandu Univ Med J (KUMJ), 2013, 11(43):221-225.
[21] Farnaghi S, Prasadam I, Cai G, et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis[J]. FASEB, 2017, 31(1): 356-367.
[22] Arai Y, Choi B, Kim BJ, et al. Tauroursodeoxycholic acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes[J]. Biomater Sci, 2019, 7(8):3178-3189.
[23] Triantaphyllidou IE, Kalyvioti E, Karavia E, et al. Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet[J]. Osteoarthritis Cartilage, 2013, 21(2):322-330.
[24] Muneshige K, Uchida K, Kenmoku T, et al. Elevation of MMP1 and ADAMTS5 mRNA expression in glenohumeral synovia of patients with hypercholesterolemia[J]. Orthop Surg Res, 2022, 17(1):97.
[25] Gabay O, Sanchez C, Salvat C, et al. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties[J]. Osteoarthritis Cartilage, 2010, 18(1):106-116.
[26] de Munter W, van der Kraan PM, van den Berg WB, et al. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis?[J]. Rheumatology (Oxford), 2016, 55(1):16-24.
[27] McNulty AL, Rothfusz NE, Leddy HA, et al. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation[J]. Orthop Res, 2013, 31(7):1039-1045.
[28] Fernandes MT, Fernandes KB, Marquez AS, et al. Association of interleukin-6 gene polymorphism (rs1800796) with severity and functional status of osteoarthritis in elderly individuals[J]. Cytokine, 2015, 75(2):316-320.
[29] Seo YS, Cho IA, Kim TH, et al. Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes[J]. Korean J Physiol Pharmacol, 2020, 24(3):249-257.
[30] Wei Z, Dong C, Guan L, Wang Y, et al. A metabolic exploration of the protective effect of Ligusticum wallichii on IL-1β-injured mouse chondrocytes[J]. Chin Med, 2020, 15:12.